[1] LEE H T, SOON L L, KEVIN K N,et al. DNA extraction from dry wood ofNeobalanocarpus heimii(Diperocarpaceae)for forensic DNA profiling and timeber tracking [J].Wood Sci Technol, 2012,46(5): 813 − 815.
[2] 陈利顶, 李秀珍, 傅伯杰, 等. 中国景观生态学发展历程与未来研究重点[J]. 生态学报, 2014,34(12): 3129 − 3141.

CHEN Liding, LI Xiuzhen, FU Bojie,et al. Development history and future research priorities of landscape ecology in China [J].J Ecol, 2014,34(12): 3129 − 3141.
[3] JIAO Lichao, YIN Yafang, XIAO Fuming,et al. Comparative analysis of two DNA extraction protocols from fresh and dried wood ofCunninghamia lanceolata(Taxodiaceae) [J].J Iawa, 2012,4(33): 441 − 456.
[4] 王宪, 沈华杰, 于清琳, 等. 基于IAWA的3种简易木材识别方法探究[J]. 西南林业大学学报, 2019,39(6): 167 − 172.

WANG Xian, SHEN Huajie, YU Qinglin,et al. Research on 3 simple timber identification methods based on IAWA [J].J Southwest For Univ, 2019,39(6): 167 − 172.
[5] MUECHER S, KLIJN J A, WASCHER D,et al. A new European landscape clasification(LANMAP): a transparent, flexible and user-oriented methodology to distinguish landscapes [J].Ecol Indic, 2010,10(1): 87 − 103.
[6] 王学顺, 黄安民, 孙一丹, 等. 基于BP神经网络的木材近红外光谱树种识别[J]. 东北林业大学学报, 2015,43(12): 82 − 85, 89.

WANG Xueshun, HUANG Anmin, SUN Yidan,et al. Back propagation artificial neural network combine with near infrared spectroscopy for timber recognition [J].J Northeast For Univ, 2015,43(12): 82 − 85, 89.
[7] 谭念, 孙一丹, 王学顺, 等. 基于主成分分析和支持向量机的木材近红外光谱树种识别研究[J]. 光谱学与光谱分析, 2017,37(11): 3370 − 3374.

TAN Nian, SUN Yidan, WANG Xueshun,et al. Research on near infrared spectrum with principal component analysis and support vector machine for timber identification [J].Spectrosc Spectral Anal, 2017,37(11): 3370 − 3374.
[8] 陈远哲, 王巧华, 高升, 等. 基于近红外光谱的淡水鱼贮藏期质构品质的无损检测模型[J]. 激光与光电子学进展, 2021,58(12): 491 − 499.

CHEN Yuanzhe, WANG Qiaohua, GAO Sheng,et al. Nondestructive testing model for textural quality of freshwater fish instorage usingnear-infrared spectroscopy [J].Laser Optoelectron Prog, 2021,58(12): 491 − 499.
[9] 郭文川, 朱德宽, 张乾, 等. 基于近红外光谱的掺伪油茶籽油检测[J]. 农业机械学报, 2020,51(9): 350 − 357.

GUO Wenchuan, ZHU Dekuan, ZHANG Qian,et al. Detection on adulterated oil-tea camellia seed oil based on near-infrared spectroscopy [J].J Agric Mach, 2020,51(9): 350 − 357.
[10] 潘拓, 马鑫, 谢安, 等. 利用主成分分析法优化BP神经网络模型在砂砾岩岩性识别中的应用[J]. 新疆地质, 2020,38(3): 417 − 420.

PAN Tuo, MA Xin, XIE An,et al. Application of the optimized BP neural network model based on principal component analysis in lithology identification of glutenite reservoirs [J].Xinjiang Geol, 2020,38(3): 417 − 420.
[11] ZHU Hongyan, CHU Bingquan, FAN Yangyang,et al. Hyperspectral imaging for predicting the internal quality of kiwifruits based on variable selection algorithms and chemometric models [J].Sci Rep, 2017,7(1): 1 − 13.
[12] ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H,et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis [J].Chemometrics Intell Lab Syst, 2001,57(2): 65 − 73.
[13] 董蒙, 栾希亭, 吴宝元, 等. 基于自适应遗传算法的电液伺服系统控制[J]. 机床与液压, 2019,47(14): 78 − 83.

DONG Meng, LUAN Xiting, WU Baoyuan,et al. Control of electro-hydraulic servo system control based on adaptive genetic algorithm [J].Mach Tools Hydraul, 2019,47(14): 78 − 83.
[14] 冯国红, 朱玉杰, 徐华东, 等. 应用遗传算法-主成分分析-反向传播神经网络的近红外光谱识别树种效果[J]. 东北林业大学学报, 2020,48(6): 56 − 60.

FENG Guohong, ZHU Yujie, XU Huadong,et al. Using near infrared spectrum to identify tree species by GA-PCA-BP neural network [J].J Northeast For Univ, 2020,48(6): 56 − 60.
[15] 许锋, 付丹丹, 王彬, 等. 基于MCCV-CARS-RF建立红提糖度和酸度的可见-近红外光谱无损检测方法[J]. 食品科学, 2018,39(8): 149 − 154.

XU Feng, FU Dandan, WANG Bin,et al. Nondestructive detection of sugar content and acidity in red globe table grapes using visible near infrared spectroscopy based on Monte-Carlo Cross Validation-Competitive Adaptive Reweighted Sampling-Random Forest (MCCV-CARS-RF) [J].Food Sci, 2018,39(8): 149 − 154.
[16] ROMERO-TORRES S, PÉREZ-RAMOS J D, MORRIS K R. Raman spectroscopic measurement of tablet-to-tablet coating variability [J].J Pharm Biomed Anal, 2005,38(2): 270 − 274.
[17] 于慧伶, 门洪生, 梁浩, 等. SA-PBT-SVM的实木表面缺陷近红外光谱识别[J]. 光谱学与光谱分析, 2018,38(6): 1724 − 1728.

YU Huiling, MEN Hongsheng, LIANG Hao,et al. Near, infrared spectroscopy identification method of wood surface defects based on SA-PBT-SVM [J].Spectrosc Spectral Anal, 2018,38(6): 1724 − 1728.
[18] 殷勇, 王光辉. 连续投影算法融合信息熵选择霉变玉米高光谱特征波长[J]. 核农学报, 2020,34(2): 356 − 362.

YIN Yong, WANG Guanghui. Hyperspectral characteristic wavelength selection method for moldy maize based on continuous projection algorithm fusion information entropy [J].J Nucl Agric Sci, 2020,34(2): 356 − 362.
[19] 朱淑鑫, 顾兴健, 杨宸, 等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J]. 江苏农业学报, 2020,36(2): 358 − 365.

ZHU Shuxin, GU Xingjian, YANG Chen,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content [J].J Jiangsu Agric Sci, 2020,36(2): 358 − 365.
[20] 陈伟, 李创, 唐荣年. 应用间隔随机蛙结合连续投影算法检测橡胶树叶片氮含量[J]. 河南科技大学学报, 2019,40(5): 51 − 56.

CHEN Wei, LI Chuang, TANG Rongnian. Application of interval randomfrog combined with successive projections algorithm to detecting nitrogen content in rubber tree leaves [J].J Henan Univ Sci Technol Nat Sci, 2019,40(5): 51 − 56.
[21] 熊智新, 房桂干, 梁龙, 等. 近红外光谱结合连续投影算法检测综纤维素含量[J]. 中国造纸学报, 2019,34(4): 46 − 51.

XIONG Zhixin, FANG Guigan, LIANG Long,et al. Full cellulose content in composite optical fibrous in combination with continuous projection algorithm [J].Transac China Pulp Paper, 2019,34(4): 46 − 51.
[22] 明曼曼, 陈芳, 孙恺琦, 等. 基于集群算法优化BP神经网络的NIRS树种识别研究[J]. 西部林业科学, 2020,49(5): 124 − 128.

MING Manman, CHEN Fang, SUN Kaiqi,et al. NIRS tree species identification based on cluster algorithm optimized BP neural network [J].J West China For Sci, 2020,49(5): 124 − 128.
[23] 汪紫阳, 尹世逵, 李耀翔, 等. 基于可见/近红外光谱识别东北地区常见木材[J]. 浙江农林大学学报, 2019,36(1): 162 − 169.

WANG Ziyang, YIN Shikui, LI Yaoxiang,et al. Identification of common wood species in northeast China using Vis/NIR spectroscopy [J].J Zhejiang A&F Univ, 2019,36(1): 162 − 169.
Baidu
map