| [1] | BHAT K A, MAHAJAN R, PAKHTOON M M,et al. Low temperature stress tolerance: an insight into the omics approaches for legume crops [J/OL].Frontiers in Plant Science, 2022,13: 888710[2023-07-20]. doi: 10.3389/fpls.2022.888710. |
| [2] | LIU Yuanyuan, WU Chu, HU Xin,et al. Transcriptome profiling reveals the crucial biological pathways involved in cold response in moso bamboo (Phyllostachys edulis) [J].Tree Physiology, 2019,40(4): 538 − 556. |
| [3] | THEOCHARIS A, CLEMENT C, BARKA E A. Physiological and molecular changes in plants grown at low temperatures [J].Planta, 2012,235(6): 1091 − 1105. |
| [4] | YANG Chunbao, YANG Haizhen, XU Qijun,et al. Comparative metabolomics analysis of the response to cold stress of resistant and susceptible Tibetan hulless barley (Hordeum distichon) [J/OL].Phytochemistry, 2020,174: 112346[2023-07-20]. doi: 10.1016/j.phytochem.2020.112346. |
| [5] | EOM S H, AHN M A, KIM E,et al. Plant response to cold stress: cold stress changes antioxidant metabolism in heading type kimchi cabbage (Brassica rapaL. ssp.pekinensis) [J/OL].Antioxidants, 2022,11(4): 700[2023-07-20]. doi: 10.3390/antiox11040700. |
| [6] | WHITLOW T H, BASSUK N L, RANNEY T G,et al. An improved method for using electrolyte leakage to assess membrane competence in plant tissues [J].Plant Physiology, 1992,98(1): 198 − 205. |
| [7] | HAYAT S, HAYAT Q, ALYEMENI M N,et al. Role of proline under changing environments: a review [J].Plant Signaling&Behavior, 2012,7(11): 1456 − 1466. |
| [8] | WANG Haiyue, GUO Lin, ZHA Ruofei,et al. Histological, metabolomic and transcriptomic analyses reveal mechanisms of cold acclimation of the moso bamboo (Phyllostachys edulis) leaf [J].Tree Physiology, 2022,42(11): 2336 − 2352. |
| [9] | ZHOU Huang, ZHU Peilei, ZHONG Xiaojuan,et al. Transcriptome analysis of moso bamboo (Phyllostachys edulis) reveals candidate genes involved in response to dehydration and cold stresses [J/OL].Frontiers in Plant Science, 2022,13[2023-07-20]. doi: 10.3389/fpls.2022.960302. |
| [10] | ABID M, TIAN Z, ATA-UL-KARIM S T,et al. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars [J].Plant Physiology and Biochemistry, 2016,106: 218 − 227. |
| [11] | MILLER G, SUZUKI N, CIFTCI-YILMAZ S,et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J].Plant,Cell&Environment, 2010,33(4): 453 − 467. |
| [12] | ZHU Jiankang. Abiotic stress signaling and responses in plants [J].Cell, 2016,167(2): 313 − 324. |
| [13] | GUO Xiaoyu, LIU Dongfeng, CHONG Kang. Cold signaling in plants: insights into mechanisms and regulation [J].Journal of Integrative Plant Biology, 2018,60(9): 745 − 756. |
| [14] | WU H L, LI L, CHENG Z C,et al. Cloning and stress response analysis of thePeDREB2AandPeDREB1Agenes in moso bamboo (Phyllostachys edulis) [J].Genetics and Molecular Research, 2015,14(3): 10206 − 10223. |
| [15] | THOMASHOW M F. So what’s new in the field of plant cold acclimation? Lots! [J].Plant Physiology, 2001,125(1): 89 − 93. |
| [16] | WANG Dazhi, JIN Ya’nan, DING Xihan,et al. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants [J].Biochemistry, 2017,82: 1103 − 1117. |
| [17] | SHI Yiting, DING Yanglin, YANG Shuhua. Molecular regulation of CBF signaling in cold acclimation [J].Trends in Plant Science, 2018,23(7): 623 − 637. |
| [18] | HWARARI D, GUAN Yuanlin, AHMAD B,et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress [J/OL].International Journal of Molecular Sciences, 2022,23(3): 1549[2023-07-20]. doi: 10.3390/ijms23031549. |
| [19] | JIN Yanan, ZHAI Shanshan, WANG Wenjia,et al. Identification of genes from the ICE-CBF-COR pathway under cold stress in Aegilops-Triticum composite group and the evolution analysis with those from triticeae [J].Physiology and Molecular Biology of Plants, 2018,24(2): 211 − 229. |
| [20] | 陈露, 杨立明, 罗玉明. 植物ICE蛋白基因家族的系统进化分析 [J]. 江苏农业科学, 2016,44(2): 42 − 47.CHEN Lu, YANG Liming, LUO Yuming. Phylogenetic analysis of the plant ICE protein gene family [J]Jiangsu Agricultural Sciences, 2016,44(2): 42 − 47. |
| [21] | YANG Xiaoyan, WANG Rui, HU Qinglei,et al.DlICE1, a stress-responsive gene fromDimocarpus longan, enhances cold tolerance in transgenicArabidopsis[J].Plant Physiology and Biochemistry, 2019,142: 490 − 499. |
| [22] | DUAN Yadong, HAN Jiaxin, GUO Baitao,et al.MbICE1 Confers drought and cold tolerance through up-regulating antioxidant capacity and stress-resistant genes inArabidopsis thaliana[J/OL].International Journal of Molecular Sciences, 2022,23(24): 16072[2023-07-20]. doi: 10.3390/ijms232416072. |
| [23] | DENG Cuiyun, YE Haiyan, FAN Meng,et al. The rice transcription factors OsICE confer enhanced cold tolerance in transgenicArabidopsis[J/OL].Plant Signaling & Behavior, 2017,12(5): e1316442[2023-07-20]. doi: 10.1080/15592324.2017.1316442. |
| [24] | CHANDER S, ALMEIDA D M, SERRA T S,et al.OsICE1 transcription factor improves photosynthetic performance and reduces grain losses in rice plants subjected to drought [J].Environmental and Experimental Botany, 2018,150: 88 − 98. |
| [25] | 兰智鑫, 侯丹, 吴蔼民, 等. 毛竹PeCIGRs基因的克隆及表达分析[J]. 浙江农林大学学报, 2023,40(5): 982 − 990.LAN Zhixin, HOU Dan, WU Aimin,et al. Cloning and expression analysis ofPeCIGRsgene inPhyllostachys edulis[J].Journal of Zhejiang A&F University, 2023,40(5): 982 − 990. |
| [26] | HUANG Bin, HUANG Zhinuo, MA Ruifang,et al. Genome-wide identification and expression analysis of LBD transcription factor genes in moso bamboo (Phyllostachys edulis) [J/OL].BMC Plant Biology, 2021,21(1): 34182934[2023-07-20]. doi: 10.1186/s12870-021-03078-3. |
| [27] | GAO Jian, ZHANG Ying, ZHANG Chunling,et al. Characterization of the floral transcriptome of moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-Seq analysis [J/OL].PLoS One, 2014,9(6): 24915141[2023-07-20]. doi: 10.1371/journal. pone. 0098910. |
| [28] | PENG Zhenhua, LU Ying, LI Lubin,et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J].Nature Genetics, 2013,45(4): 456 − 461. |
| [29] | HUANG Zhuo, JIN Sihan, GUO Handu,et al. Genome-wide identification and characterization of TIFY family genes in moso bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses [J/OL].PeerJ, 2016,4: e2620[2023-07-20]. doi: 10.7717/peerj.2620. |
| [30] | 徐秀荣, 杨克彬, 王思宁, 等. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析[J]. 植物科学学报, 2019,37(5): 610 − 620.XU Xiurong, YANG Kebin, WANG Sining,et al. Identification ofbHLHtranscription factors in moso bamboo (Phyllostachys edulis) and their expression analysis under drought and salt stress [J].Plant Science Journal, 2019,37(5): 610 − 620. |
| [31] | FINN R D, COGGILL P, EBERHARDT R Y,et al. The Pfam protein families database: towards a more sustainable future [J].Nucleic Acids Research, 2016,44(D1): 279 − 285. |
| [32] | 李新然, 张智俊, 喻珮瑶, 等. 毛竹SWEET基因家族的全基因组鉴定与分析[J]. 生物信息学, 2020,18(4): 236 − 246.LI Xinran, ZHANG Zhijun, YU Peiyao,et al. Genome-wide identification and analysis of SWEET gene family inPhyllostachys edulis[J].Bioinformatics, 2020,18(4): 236 − 246. |
| [33] | LETUNIC I, DOERKS T, BORK P. SMART 7: recent updates to the protein domain annotation resource [J/OL].Nucleic Acids Research, 2012,40(D1): D302[2023-07-20]. doi: 10.1093/nar/gkr931. |
| [34] | CHEN Chengjie, CHEN Hao, ZHANG Yi,et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J].Molecular Plant, 2020,13(8): 1194 − 1202. |
| [35] | LIU Hanmei, WANG Yongbin, LIU Lijun,et al.Pleiotropic ZmICE1 is an important transcriptional regulator of maize endosperm starch biosynthesis [J/OL].Frontiers in Plant Science, 2022,13: 895763[2023-07-20]. doi: 10.3389/fpls.2022.895763. |
| [36] | 蔡庆生. 植物生理学实验[M]. 北京: 中国农业大学出版社, 2013.CAI Qingsheng.Plant Physiology[M]. Beijing: China Agricultural University Press, 2013. |
| [37] | 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.ZHOU Qi.Guidance for Plant Physiology Experiments[M]. Beijing: China Agricultural University Press, 2000. |
| [38] | 吴林军. 非生物胁迫下毛竹qRT-PCR分析中内参基因的选择[D]. 杭州: 浙江农林大学, 2019.WU Linjun.The Selection of Endogenous Reference Genes in Phyllostachys edulis Treated with Abiotic Stresses for qRT-PCR Analysis[D]. Hangzhou: Zhejiang A&F University, 2019. |
| [39] | ZHOU L, HE Y J, LI J,et al. An eggplant SmICE1a gene encoding MYC-type ICE1-like transcription factor enhances freezing tolerance in transgenicArabidopsis thaliana[J].Plant Biology, 2020,22(3): 450 − 458. |
| [40] | WANG Xipan, SONG Qiping, GUO Haoguo,et al. StICE1 enhances plant cold tolerance by directly upregulating StLTI6A expression [J].Plant Cell Reports, 2022,42(1): 197 − 210. |
| [41] | WANG Peiwen, ZHU Lin, LI Ziheng,et al. Genome-wide identification of the U-box E3 ubiquitin ligase gene family in cabbage (Brassica oleraceavar.capitata) and its expression analysis in response to cold stress and pathogen infection [J/OL].Plants-Basel, 2023,12(7): 1437[2023-07-20]. doi: 10.3390/plants12071437. |
| [42] | MARINO D, DUNAND C, PUPPO A,et al. A burst of plant NADPH oxidases [J].Trends in Plant Science, 2012,17(1): 9 − 15. |