[1] Food and Agriculture Organization of the United Nations.Global Status of Salt-affected Soils-Main Report[R/OL]. Rome: Food and Agriculture Organization of the United Nations, 2024[2025-08-18]. DOI:10.4060/cd3044en.
[2] van ZELM E, ZHANG Yanxia, TESTERINK C. Salt tolerance mechanisms of plants [J].Annual Review of Plant Biology, 2020,71: 403−433.
[3] ZHOU Huapeng, SHI Haifan, YANG Yongqing,et al. Insights into plant salt stress signaling and tolerance [J].Journal of Genetics and Genomics, 2024,51(1): 16−34.
[4] 焦明翠, 蔡立格, 魏健, 等. 盐胁迫的生理危害与植物的适应机制研究进展[J]. 长春师范大学学报, 2023,42(6): 125−132.

JIAO Mingcui, CAI Lige, WEI Jian,et al. Research progress on the physiological harms of salt stress and the adaptation mechanism of plants [J].Journal of Changchun Normal University, 2023,42(6): 125−132.
[5] ZHU Zhihui, ZHOU Yuqing, LIU Xiuyue,et al. Integrated transcriptomic and metabolomic analyses uncover the key pathways ofLimonium bicolorin response to salt stress [J].Plant Biotechnology Journal, 2025,23(3): 715−730.
[6] MAURYA V, SINGH N, SHARMA I,et al. Effect of melatonin in regulating salt stress responses in plants[M]// SHARMA A, AHAMMED G J.Melatonin in Plants:Role in Plant Growth,Development,and Stress Response. Singapore: Springer Nature Singapore, 2024: 109−139.
[7] KOLUPAEV Y E, YASTREB T O. Role of jasmonate and jasmonate signaling components in plant adaptation to salt stress[M]//YASTREB T O.Regulation of Adaptive Responses in Plants. New York: Nova Science Publishers, 2024: 161−207.
[8] MIR R A, ARYENDU A, SOMASUNDARAM R. Salicylic acid and salt stress tolerance in plants: a review [J].Journal of Stress Physiology and Biochemistry, 2021,17(3): 32−50.
[9] GHASSEMI-GOLEZANI K, SAMEA-ANDABJADID S. Cytokinin signaling in plants under salt stress[M]// AFTAB T.Auxins, Cytokinins and Gibberellins Signaling in Plants. Cham: Springer International Publishing, 2022: 189−212.
[10] SONG Xin, ZHANG Miao, WANG Tingting,et al. Polyploidization leads to salt stress resilienceviaethylene signaling inCitrusplants [J].New Phytologist, 2025,246(1): 176−191.
[11] BASHARAT S, SAEED W, LIU Pingwu,et al. Abscisic acid mediated salinity stress tolerance in crops[J/OL].Plant Hormones, 2025,1(1): e015[2025-07-30]. DOI: 10.48130/ph-0025-0014.
[12] YANG Xinhui, LIU Zisheng, CHEN Jun,et al. PP2C-mediated ABA signaling pathway underlies exogenous abscisic acid-induced enhancement of saline-alkaline tolerance in potato (Solanum tuberosumL. )[J/OL].Plants, 2025,14(13): 1921[2025-07-30]. DOI: 10.3390/plants14131921.
[13] 张云霞, 石勇, 王瑞刚, 等. 初始盐胁迫下ABA与CaM对胡杨叶片气体交换的调控[J]. 林业科学, 2008,44(1): 57−64.

ZHANG Yunxia, SHI Yong, WANG Ruigang,et al. Effects of ABA and CaM on leaf gas exchange ofPopulus euphraticain the process of initial salinity [J].Scientia Silvae Sinicae, 2008,44(1): 57−64.
[14] 邓昌哲, 安飞飞, 李开绵, 等. 外源ABA及其抑制剂钨酸钠对木薯块根类胡萝卜素相关基因和蛋白的影响[J]. 生物技术通报, 2017,33(11): 76−83.

DENG Changzhe, AN Feifei, LI Kaimian,et al. Effects of ABA and its synthesis inhibitor sodium tungstate on carotenoid associated genes and enzymes of cassava tuber root [J].Biotechnology Bulletin, 2017,33(11): 76−83.
[15] ZHANG Qitong, ZHANG Lili, GENG Biao,et al. Interactive effects of abscisic acid and nitric oxide on chilling resistance and active oxygen metabolism in peach fruit during cold storage [J].Journal of the Science of Food and Agriculture, 2019,99(7): 3367−3380.
[16] LI Wenfang, MAO Juan, SU Jing,et al. Exogenous ABA and its inhibitor regulate flower bud induction of apple cv. ‘Nagafu No. 2’ grafted on different rootstocks [J].Trees, 2021,35(2): 609−620.
[17] SAINI L K, SINGH N, PANDEY G K. Plant protein phosphatase 2C: critical negative regulator of ABA signaling[M]//PANDEY G K.Protein Phosphatases and Stress Management in Plants. Cham: Springer International Publishing, 2020: 83−102.
[18] HEWAGE K A H, YANG Jingfang, WANG Di,et al. Chemical manipulation of abscisic acid signaling: a new approach to abiotic and biotic stress management in agriculture[J/OL].Advanced Science, 2020,7(18): 2001265[2025-07-30]. DOI: 10.1002/advs.202001265.
[19] HOANG X L T, NHI D N H, THU N B A,et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses [J].Current Genomics, 2017,18(6): 483−497.
[20] ZHENG Yuan, CHEN Zhaojin, MA Liang,et al. The ubiquitin E3 ligase RHA2b promotes degradation of MYB30 in abscisic acid signaling [J].Plant Physiology, 2018,178(1): 428−440.
[21] NIE Kaili, ZHAO Hongyun, WANG Xiaopei,et al. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination [J].Journal of Integrative Plant Biology, 2022,64(4): 930−941.
[22] ZHAN Qidi, SHEN Jialu, NIE Kaili,et al. MIW1 participates in ABA signaling through the regulation of MYB30 inArabidopsis[J/OL].Plant Science, 2023,332: 111717[2025-07-30]. DOI: 10.1016/j.plantsci.2023.111717.
[23] 刘淼. 基于转录组学的芙蓉菊与甘菊杂交后代耐盐机制研究[D]. 北京: 北京林业大学, 2022.

LIU Miao.Study of the Salt Tolerance Mechanism in the Hybrids of Crossostephium chinense and Chrysanthemum lavandulifolium Based on Transcriptomic Analyses[D]. Beijing: Beijing Forestry University, 2022.
[24] 陈俊通. 广义菊属远缘杂交障碍及耐盐种质创制的研究[D]. 北京: 北京林业大学, 2019.

CHEN Juntong.Exploration on Reproductive Barriers in Distant Hybridization and Creation of Salt-tolerant Germplasms within Chrysanthemum in Broad Sense[D]. Beijing: Beijing Forestry University, 2019.
[25] WANG Yuxin, LIU Miao, GUO Ziyu,et al. Comparative physiological and transcriptome analysis ofCrossostephium chinensereveals its molecular mechanisms of salt tolerance[J/OL].International Journal of Molecular Sciences, 2023,24(23): 16812[2025-07-30]. DOI: 10.3390/ijms242316812.
[26] ZHAO Jing, LI Gang, YI Guoxiang,et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules [J].Analytica Chimica Acta, 2006,571(1): 79−85.
[27] ÁBRAHÁM E, HOURTON-CABASSA C, ERDEI L,et al. Methods for determination of proline in plants[M]// SUNKAR R.Plant Stress Tolerance. Totowa: Humana Press, 2010: 317−331.
[28] STEWART R R, BEWLEY J D. Lipid peroxidation associated with accelerated aging of soybean axes [J].Plant Physiology, 1980,65(2): 245−248.
[29] 赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994,30(3): 207−210.

ZHAO Shijie, XU Changcheng, ZOU Qi,et al. Improvement of determination method of malondialdehyde in plant tissues [J].Plant Physiology Communications, 1994,30(3): 207−210.
[30] CHEN Chengjie, CHEN Hao, ZHANG Yi,et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J].Molecular Plant, 2020,13(8): 1194−1202.
[31] CAMACHO C, COULOURIS G, AVAGYAN V,et al. BLAST+: architecture and applications[J/OL].BMC Bioinformatics, 2009,10: 421[2025-07-30]. DOI: 10.1186/1471-2105-10-421.
[32] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J].Molecular Biology and Evolution, 2013,30(4): 772−780.
[33] SUYAMA M, TORRENTS D, BORK P. PAL2NAL: robust conversion of protein sequence alignments into the correspondingCodonalignments[J/OL].Nucleic Acids Research, 2006,34(suppl 2): W609-W612[2025-07-30]. DOI: 10.1093/nar/gkl315.
[34] MINH B Q, SCHMIDT H A, CHERNOMOR O,et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era [J].Molecular Biology and Evolution, 2020,37(5): 1530−1534.
[35] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11 [J].Molecular Biology and Evolution, 2021,38(7): 3022−3027.
[36] DENG Yin’ai, YANG Peng, ZHANG Qianle,et al. Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase inChrysanthemum indicum[J/OL].Cell Reports, 2024,43(2): 113725[2025-07-30]. DOI: 10.1016/j.celrep.2024.113725.
[37] SONG Aiping, SU Jiangshuo, WANG Haibin,et al. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivatedChrysanthemum[J/OL].Nature Communications, 2023,14(1): 2021[2025-07-30]. DOI: 10.1038/s41467-023-37730-3.
[38] SONG Chi, LIU Yifei, SONG Aiping,et al. TheChrysanthemum nankingensegenome provides insights into the evolution and diversification ofChrysanthemumflowers and medicinal traits [J].Molecular Plant, 2018,11(12): 1482−1491.
[39] WEN Xiaohui, LI Junzhuo, WANG Lili,et al. TheChrysanthemum lavandulifoliumgenome and the molecular mechanism underlying diverseCapitulumtypes[J/OL].Horticulture Research, 2022,9: uhab022[2025-07-30]. DOI: 10.1093/hr/uhab022.
[40] SHEN Fei, QIN Yajuan, WANG Rui,et al. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae[J/OL].Nature Communications, 2023,14(1): 4334[2025-07-30]. DOI: 10.1038/s41467-023-40002-9.
[41] BADOUIN H, GOUZY J, GRASSA C J,et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution [J].Nature, 2017,546(7656): 148−152.
[42] FAN Wei, WANG Sen, WANG Hengchao,et al. The genomes of chicory, endive, great burdock and yacon provide insights into Asteraceae Palaeo-polyploidization history and plant inulin production [J].Molecular Ecology Resources, 2022,22(8): 3124−3140.
[43] CHEN Hongyu, GUO Miaoxian, DONG Shuting,et al. A chromosome-scale genome assembly ofArtemisia argyireveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity[J/O].Plant Communications, 2023,4(3): 100516[2025-07-30]. DOI: 10.1016/j.xplc.2023.100516.
[44] SHEN Qian, ZHANG Lida, LIAO Zhihua,et al. The genome ofArtemisia annuaprovides insight into the evolution of Asteraceae family and artemisinin biosynthesis [J].Molecular Plant, 2018,11(6): 776−788.
[45] MELTON A E, CHILD A W, BEARD R S,et al. A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands[J/OL].G3, 2022,12(7): jkac122[2025-07-30]. DOI: 10.1093/g3journal/jkac122.
[46] ZHOU Yao, ZHANG Zhiyang, BAO Zhigui,et al. Graph pangenome captures missing heritability and empowers tomato breeding [J].Nature, 2022,606(7914): 527−534.
[47] LAMESCH P, BERARDINI T Z, LI Donghui,et al. TheArabidopsisinformation resource (TAIR): improved gene annotation and new tools[J/OL].Nucleic Acids Research, 2012,40: D1202-D1210[2025-07-30]. DOI: 10.1093/nar/gkr1090.
[48] TUSKAN G A, DIFAZIO S, JANSSON S,et al. The genome of black cottonwood,Populus trichocarpa(Torr. & Gray) [J].Science, 2006,313(5793): 1596−1604.
[49] JAILLON O, AURY J M, NOEL B,et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiospermPhyla[J].Nature, 2007,449(7161): 463−467.
[50] FILIAULT D L, BALLERINI E S, MANDÁKOVÁ T,et al. TheAquilegiagenome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history[J/OL].eLife, 2018,7: e36426[2025-07-30]. DOI: 10.7554/eLife.36426.
[51] HUFFORD M B, SEETHARAM A S, WOODHOUSE M R,et al.De novoassembly, annotation, and comparative analysis of 26 diverse maize genomes[J].Science, 2021,373(6555): 655−662.
[52] OUYANG Shu, ZHU Wei, HAMILTON J,et al. The TIGR rice genome annotation resource: improvements and new features[J/OL].Nucleic Acids Research, 2007,35: D883-D887[2025-07-30]. DOI: 10.1093/nar/gkl976.
[53] CHEN Jinhui, HAO Zhaodong, GUANG Xuanmin,et al. Author correction:Liriodendrongenome sheds light on angiosperm phylogeny and species-pair differentiation[J/OL].Nature Plants, 2019,5(3): 328[2025-07-30]. DOI: 10.1038/s41477-018-0323-6.
[54] CAREY S B, AKÖZBEK L, LOVELL J T,et al. ZW sex chromosome structure inAmborella trichopoda[J].Nature Plants, 2024,10(12): 1944−1954.
[55] VEGA A, O’BRIEN J A, GUTIÉRREZ R A. Nitrate and hormonal signaling crosstalk for plant growth and development [J].Current Opinion in Plant Biology, 2019,52: 155−163.
[56] 马祥, 李中兴, 杨荣尘, 等. 盐胁迫对不同耐盐性燕麦糖类及内源激素含量变化的影响[J/OL]. 草业学报, 2025-09-11[2025-07-30]. http://kns.cnki.net/kcms/detail/62.1105.S.20250910.1258.004.html.

MA Xiang, LI Zhongxing, YANG Rongchen,et al. The effect of salt stress on the changes of sugar and endogenous hormone content in oats with different salt tolerance [J].Acta Prataculturae Sinica, 2025-09-11[2025-07-30]. http://kns.cnki.net/kcms/detail/62.1105.S.20250910.1258.004.html.
[57] 李海洋, 李爱学, 王成, 等. 盐胁迫对苗期向日葵内源激素含量的影响[J]. 干旱地区农业研究, 2018,36(6): 92−97.

LI Haiyang, LI Aixue, WANG Cheng,et al. Effects of salt stress on endogenous hormone contents in sunflower seedlings [J].Agricultural Research in the Arid Areas, 2018,36(6): 92−97.
[58] 张钰, 陈慧, 王改萍. 外源ABA对楸树幼苗NaCl胁迫的缓解效应及其生长生理响应特征[J]. 西北植物学报, 2023,43(6): 996−1005.

ZHANG Yu, CHEN Hui, WANG Gaiping. Alleviating effects of exogenous ABA onCatalpa bungeiseedlings under NaCl stress and growth physiological response characteristics [J].Acta Botanica Boreali-Occidentalia Sinica, 2023,43(6): 996−1005.
[59] 沈惠娟, 李梅枝, 梁成喜. 盐胁迫下ABA对刺槐幼苗体内腐胺、脯氨酸和保护酶系统的影响[J]. 浙江林学院学报, 1992,9(3): 57−63.

SHEN Huijuan, LI Meizhi, LIANG Chengxi. Effects of ABA on putrescine, proline and protective enzyme system inRobinia pseudoacaciaseedlings under salt stress [J].Journal of Zhejiang Forestry College, 1992,9(3): 57−63.
[60] 马福钦, 王彦, 郑晓琳, 等. 盐胁迫下外源脱落酸对鹰嘴紫云英种子萌发及幼苗生理特性的影响[J]. 核农学报, 2025,39(8): 1797−1806.

MA Fuqin, WANG Yan, ZHENG Xiaolin,et al. Effects of exogenous abscisic acid on seed germination and seedling physiological characteristics ofAstragalus cicerseedlings under salt stress [J].Journal of Nuclear Agricultural Sciences, 2025,39(8): 1797−1806.
[61] 沈徐悦, 张浪, 陈蓉蓉, 等. 盐胁迫对望春玉兰幼苗形态和相关生理指标的影响[J]. 浙江农林大学学报, 2021,38(2): 289−295.

SHEN Xuyue, ZHANG Lang, CHEN Rongrong,et al. Effects of salt stress on morphology and related physiological indices ofMagnolia biondiiseedlings [J].Journal of Zhejiang A&F University, 2021,38(2): 289−295.
[62] 王亚丽. 外源ABA对盐胁迫下八棱海棠苗木生长及生理特性的影响[J]. 山西林业科技, 2024,53(2): 25−28.

WANG Yali. Effect of exogenous ABA on the growth and physiological characteristics ofMalus robustaseedlings under salt stress [J].Shanxi Forestry Science and Technology, 2024,53(2): 25−28.
[63] 田戈, 南丽丽, 王利群, 等. 盐胁迫下外源ABA对红豆草幼苗生长与生理特性的影响[J]. 草业学报, 2025,34(10): 95−106.

TIAN Ge, NAN Lili, WANG Liqun,et al. Effects of exogenous ABA on growth and physiological characteristics ofOnobrychis cyriseedlings under salt stress [J].Acta Prataculturae Sinica, 2025,34(10): 95−106.
[64] 宁朋, 王菲, 肖雨, 等. 外源ABA与盐胁迫对银边吊兰生长及生理特性的影响[J]. 江西农业大学学报, 2021,43(2): 287−295.

NING Peng, WANG Fei, XIAO Yu,et al. Effects of ABA and salt stress on the growth and physiological characteristics ofChlorophytum comosumvar.variegatum[J].Acta Agriculturae Universitatis Jiangxiensis, 2021,43(2): 287−295.
[65] ZHANG Jihong, LI Xiushan, HE Zhimin,et al. Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance inArabidopsis thaliana[J].Molecular Biology Reports, 2013,40(3): 2633−2644.
[66] 王博雅. 拟南芥中NSOS1与HAB3基因调控逆境应答的分子机理研究[D]. 杨凌: 西北农林科技大学, 2014.

WANG Boya.Study of the Molecular Mechanisms of AtNSOS1and AtHAB3Genes Regulating Stress Response in Arabidopsis thaliana[D]. Yangling: Northwest agriculture and forestry university of science and technology, 2014.
[67] 孙宏涛. 天女木兰A类PP2C基因克隆及其在种子休眠解除中的功能验证[D]. 沈阳: 沈阳农业大学, 2022.

SUN Hongtao.Cloning of Group A PP2C Gene in Magnolia sieboldii and Its Functional Verification in the Release of Seed Dormancy[D]. Shenyang: Shenyang Agricultural University, 2022.
[68] 张恒阳. 盐芥PP2C基因应对非生物胁迫分子机制及功能研究[D]. 济南: 山东师范大学, 2024.

ZHANG Hengyang.Research on Molecular Mechanisms and Function of Eutrema salsugineum PP2C Gene in Response to Abiotic Stress[D]. Ji’nan: Shandong Normal University, 2024.
Baidu
map