[1] STOCKMANN U, ADAMS M A, CRAWFORD J W,et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon [J].Agriculture,Ecosystems&Environment, 2013,164: 80 − 99.
[2] SOUCÉMARIANADIN L N, CÉCILLON L, GUENET B,et al. Environmental factors controlling soil organic carbon stability in French forest soils [J].Plant and Soil, 2018,426(1/2): 267 − 286.
[3] van der WERF G R, MORTON D C, DEFRIES R S,et al. CO2emissions from forest loss [J].Nature Geoscience, 2009,2(11): 737 − 738.
[4] BASTIN J F, FINEGOLD Y, GARCIA C,et al. The global tree restoration potential [J].Science, 2019,365(6448): 76 − 79.
[5] WEI Xiaohua, LI Qinlin, LIU Yuanqiu,et al. Restoring ecosystem carbon sequestration through afforestation: a sub-tropic restoration case study [J].Forest Ecology and Management, 2013,300: 60 − 67.
[6] HONG Songbai, YIN Guodong, PIAO Shilong,et al. Divergent responses of soil organic carbon to afforestation [J].Nature Sustainability, 2020,3(9): 694 − 700.
[7] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J].Nature, 2006,440(7081): 165 − 173.
[8] JIN Zhao, DONG Yunshe, WANG Yunqiang,et al. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China [J].Science of the Total Environment, 2014,485: 615 − 623.
[9] SOLLY E F, SCHÖNING I, BOCH S,et al. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands [J].Plant and Soil, 2014,382(1): 203 − 218.
[10] 李鹏, 刘晓君, 刘苑秋, 等. 退化红壤区不同植被恢复模式的土壤养分空间分布特征[J]. 中南林业科技大学学报, 2023,43(8): 113 − 124.

LI Peng, LIU Xiaojun, LIU Yuanqiu,et al. Spatial distribution characteristics of soil nutrients after vegetation restoration in degraded red soil regions [J].Journal of Central South University of Forestry&Technology, 2023,43(8): 113 − 124.
[11] 李燕燕, 刘亮英, 吴春生, 等. 亚热带红壤区不同植被恢复类型土壤有机碳δ13C特征[J]. 核农学报, 2020,34(11): 2561 − 2568.

LI Yanyan, LIU Liangying, WU Chunsheng,et al. δ13C characteristic of soil organic carbon under different vegetation restoration in subtropical red soil region [J].Journal of Nuclear Agricultural Sciences, 2020,34(11): 2561 − 2568.
[12] XIAO Shengsheng, ZHANG Jie, DUAN Jian,et al. Soil organic carbon sequestration and active carbon component changes following different vegetation restoration ages on severely eroded red soils in subtropical China [J/OL].Forests, 2020,11(12): 1304[2023-06-10]. doi: 10.3390/f11121304.
[13] 辜翔, 张仕吉, 刘兆丹, 等. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018,42(5): 595 − 608.

GU Xiang, ZHANG Shiji, LIU Zhaodan,et al. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J].Chinese Journal of Plant Ecology, 2018,42(5): 595 − 608.
[14] 吕茂奎, 谢锦升, 周艳翔, 等. 红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化[J]. 应用生态学报, 2014,25(1): 37 − 44.

LÜ Maokui, XIE Jinsheng, ZHOU Yanxiang,et al. Dynamics of unprotected soil organic carbon with the restoration process ofPinus massonianaplantation in red soil erosion area [J].Chinese Journal of Applied Ecology, 2014,25(1): 37 − 44.
[15] 刘政, 许文斌, 田地, 等. 南方红壤严重侵蚀地不同恢复年限马尾松人工林生态系统碳储量特征[J]. 水土保持通报, 2019,39(1): 37 − 42.

LIU Zheng, XU Wenbin, TIAN Di,et al. Characteristics of ecosystem carbon stocks inPinus massonianaplantations with different restoration age on severely eroded red soils in southern China [J].Bulletin of Soil and Water Conservation, 2019,39(1): 37 − 42.
[16] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2008: 30 − 109.

BAO Shidan.Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2008: 30 − 109.
[17] CHEN Yuanqi, YU Shiqin, LIU Suqing,et al. Reforestation makes a minor contribution to soil carbon accumulation in the short term: evidence from four subtropical plantations [J].Forest Ecology and Management, 2017,384: 400 − 405.
[18] 全国森林资源标准化技术委员会. 立木生物量模型及碳计量参数——马尾松: LY/T 2263—2014 [S]. 北京: 中国标准出版社, 2014.

National Technical Committee on Forest Resources Standardization.Tree Biomass Models and Related Parameters to Carbon Accounting for Pinus massoniana:LY/T2263−2014 [S]. Beijing: Standards Press of China, 2014.
[19] 全国森林资源标准化技术委员会. 立木生物量模型及碳计量参数——湿地松: LY/T 2261—2014 [S]. 北京: 中国标准出版社, 2014.

National Technical Committee on Forest Resources Standardization.Tree Biomass Models and Related Parameters to Carbon Accounting forPinus elliottii:LY/T2261−2014 [S]. Beijing: Standards Press of China, 2014.
[20] 全国森林资源标准化技术委员会. 立木生物量模型及碳计量参数——木荷: LY/T 2660—2016 [S]. 北京: 中国标准出版社, 2016.

National Technical Committee on Forest Resources Standardization.Tree Biomass Models and Related Parameters to Carbon Accounting for Schima superba:LY/T2660−2016 [S]. Beijing: Standards Press of China, 2016.
[21] 谢锦升, 杨玉盛, 解明曙, 等. 植被恢复对侵蚀退化红壤碳吸存的影响[J]. 水土保持学报, 2006,20(6): 95 − 98, 123.

XIE Jinsheng, YANG Yusheng, XIE Mingshu,et al. Effects of vegetation restoration on carbon sequestration in degraded red soil [J].Journal of Soil and Water Conservation, 2006,20(6): 95 − 98, 123.
[22] LAGANIÈRE J, ANGERS D A, PARÉ D. Carbon accumulation in agricultural soils after afforestation: a meta-analysis [J].Global Change Biology, 2010,16(1): 439 − 453.
[23] ZHAO Yonggang, LIU Xiaofang, WANG Zilong,et al. Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China [J].Catena, 2015,133: 303 − 308.
[24] 王振鹏, 陈金磊, 李尚益, 等. 湘中丘陵区不同恢复阶段森林生态系统的碳储量特征[J]. 林业科学, 2020,56(5): 19 − 28.

WANG Zhenpeng, CHEN Jinlei, LI Shangyi,et al. Characteristics of forest ecosystem carbon stocks at different vegetation restoration stages in hilly area of central Hunan Province, China [J].Scientia Silvae Sinicae, 2020,56(5): 19 − 28.
[25] POEPLAU C, VOS C, DON A. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content [J].Soil, 2017,3(1): 61 − 66.
[26] 刘苑秋, 杜天真, 郭晓敏, 等. 退化第四纪红黏土重建森林模式及其土壤恢复研究[J]. 水土保持学报, 2004,18(6): 34 − 37.

LIU Yuanqiu, DU Tianzhen, GUO Xiaomin,et al. Study on rehabilitating forest model and soil restoration on Quaternary red soil [J].Journal of Soil and Water Conservation, 2004,18(6): 34 − 37.
[27] DOU Xiaolin, DENG Qi, LI Ming,et al. Reforestation ofPinus massonianaalters soil organic carbon and nitrogen dynamics in eroded soil in south China [J].Ecological Engineering, 2013,52: 154 − 160.
[28] 王志齐, 杜兰兰, 赵慢, 等. 黄土区不同退耕方式下土壤碳氮的差异及其影响因素[J]. 应用生态学报, 2016,27(3): 716 − 722.

WANG Zhiqi, DU Lanlan, ZHAO Man,et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau [J].Chinese Journal of Applied Ecology, 2016,27(3): 716 − 722.
[29] WANG Bing, XUE Sha, LIU Guobin,et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, northwest China [J].Catena, 2012,92: 186 − 195.
[30] 袁星明, 朱宁华, 郭耆, 等. 南亚热带不同人工林对土壤理化性质的影响及土壤质量评价[J]. 林业科学研究, 2022,35(3): 112 − 122.

YUAN Xingming, ZHU Ninghua, GUO Shi,et al. Effects of different plantations on soil physical and chemical properties and soil quality evaluation in south subtropical zone [J].Forest Research, 2022,35(3): 112 − 122.
[31] WANG Dong, LIU Yu, WU Gaolin,et al. Effect of rest-grazing management on soil water and carbon storage in an arid grassland (China) [J].Journal of Hydrology, 2015,527: 754 − 760.
[32] 许婷婷, 董智, 郭建英, 等. 放牧对内蒙古典型草原植物群落特征与土壤有机碳的影响[J]. 草地学报, 2022,30(9): 2273 − 2279.

XU Tingting, DONG Zhi, GUO Jianying,et al. Effects of grazing on plant community and soil organic carbon in the typical steppe of Inner Mongolia, China [J].Acta Agrestia Sinica, 2022,30(9): 2273 − 2279.
[33] 陈美玲, 赵友朋, 张金池, 等. 凤阳山典型林分土壤有机碳特征[J]. 东北林业大学学报, 2022,50(10): 69 − 75.

CHEN Meiling, ZHAO Youpeng, ZHANG Jinchi,et al. Soil organic carbon characteristics of different forest types in Fengyang Mountain [J].Journal of Northeast Forestry University, 2022,50(10): 69 − 75.
[34] 王小平, 杨雪, 杨楠, 等. 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响[J]. 生态学报, 2019,39(17): 6264 − 6272.

WANG Xiaoping, YANG Xue, YANG Nan,et al. Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community [J].Acta Ecologica Sinica, 2019,39(17): 6264 − 6272.
[35] 邓翠, 吕茂奎, 曾敏, 等. 红壤侵蚀区植被恢复过程中土壤有机碳组分变化[J]. 水土保持学报, 2017,31(4): 178 − 183.

DENG Cui, LÜ Maokui, ZENG Min,et al. Dynamies of soil organic carbon fractions with the restoration process ofPinus massonianaplantation in eroded red soil region [J].Journal of Soil and Water Conservation, 2017,31(4): 178 − 183.
[36] HOPKINS D W, SPARROW A D, ELBERLING B,et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley [J].Soil Biology and Biochemistry, 2006,38(10): 3130 − 3140.
[37] FISK M, SANTANGELO S, MINICK K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests [J].Soil Biology and Biochemistry, 2015,81: 212 − 218.
[38] 尤龙辉, 叶功富, 陈增鸿, 等. 滨海沙地主要优势树种的凋落物分解及其与初始养分含量的关系[J]. 福建农林大学学报(自然科学版), 2014,43(6): 585 − 591.

YOU Longhui, YE Gongfu, CHEN Zenghong,et al. Litter decomposition and initial nutrient content of major dominant tree species on coastal sandy areas [J].Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2014,43(6): 585 − 591.
[39] JIA Guomei, CAO Jing, WANG Chunyan,et al. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China [J].Forest Ecology and Management, 2005,217(1): 117 − 125.
[40] CHEN Shutao, HUANG Yao, ZOU Jianwen,et al. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen [J].Global and Planetary Change, 2013,100: 99 − 108.
Baidu
map