| [1] | 郭泽鑫, 曹聪, 刘萍. 基于连清数据的广东杉木人工林生物量模型构建[J]. 中南林业科技大学学报, 2022,42(8): 78 − 89.GUO Zexin, CAO Cong, LIU Ping. Construction of biomass models ofCunninghamia lanceolataplantation based on continuous forest inventory in Guangdong [J].Journal of Central South University of Forestry&Technology, 2022,42(8): 78 − 89. |
| [2] | 周昊, 叶尔江•拜克吐尔汉, 何怀江, 等. 东北地区主要造林树种幼苗期生物量分配特征与异速生长模型[J]. 林业科学, 2023,59(11): 23 − 32.ZHOU Hao, Yeerjiang Baiketuerhan, HE Huaijiang,et al. Biomass distribution characteristics and species-specific allometric equations for afforestation species in Northeast China [J].Scientia Silvae Sinicae, 2023,59(11): 23 − 32. |
| [3] | 王海军, 李峰, 肖楠. 黑龙江省主要碳汇树种生物量异速生长方程研究[J]. 防护林科技, 2016(5): 21 − 22.WANG Haijun, LI Feng, XIAO Nan. Allomteric equation fog biomass of the main carbon sink species in Heilongjiang Province [J].Protection Forest Science and Technology, 2016(5): 21 − 22. |
| [4] | SOLTANI A.Mathematical Modeling in Field Crops[M]. Mashhad: JMD Press, 2009. |
| [5] | NIKLAS K J.Plant Allometry:the Scaling of Form and Process[M]. Chicago: University of Chicago Press, 1994. |
| [6] | SUN Han, WANG Xiaoping, FAN Dayong. Effects of climate, biotic factors, and phylogeny on allometric relationships: testing the metabolic scaling theory in plantations and natural forests across China [J/OL].Forest Ecosystems, 2020,7: 51[2024-01-14]. doi: 10.1186/s40663-020-00263-y. |
| [7] | 陈东升, 孙晓梅, 金英博, 等. 林龄和竞争对日本落叶松各组分生物量异速关系的影响[J]. 生态学报, 2020,40(3): 843 − 853.CHEN Dongsheng, SUN Xiaomei, JIN Yingbo,et al. Effects of stand age and competition on allometric relationships for biomass partitioning inLarix kaempferiplantation [J].Acta Ecologica Sinica, 2020,40(3): 843 − 853. |
| [8] | 董点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程[J]. 北京林业大学学报, 2014,36(4): 54 − 63.DONG Dian, LIN Tianxi, TANG Jingyi,et al. Biomass allocation patterns and allometric models ofTilia amurensis[J].Journal of Beijing Forestry University, 2014,36(4): 54 − 63. |
| [9] | 薛春泉, 徐期瑚, 林丽平, 等. 基于异速生长和理论生长方程的广东省木荷生物量动态预测[J]. 林业科学, 2019,55(7): 86 − 94.XUE Chunquan, XU Qihu, LIN Liping,et al. Biomass dynamic predicting forSchima superbain Guangdong based on allometric and theoretical growth equation [J].Scientia Silvae Sinicae, 2019,55(7): 86 − 94. |
| [10] | 兰洁, 肖中琪, 李吉玫, 等. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020,37(3): 416 − 423.LAN Jie, XIAO Zhongqi, LI Jimei,et al. Biomass allocation and allometric growth ofPicea schrenkianain Tianshan Mountains [J].Journal of Zhejiang A&F University, 2020,37(3): 416 − 423. |
| [11] | 刘坤, 曹林, 汪贵斌, 等. 银杏生物量分配格局及异速生长模型[J]. 北京林业大学学报, 2017,39(4): 12 − 20.LIU Kun, CAO Lin, WANG Guibin,et al. Biomass allocation patterns and allometric models ofGinkgo biloba[J].Journal of Beijing Forestry University, 2017,39(4): 12 − 20. |
| [12] | PICARD N, RUTISHAUSER E, PLOTON P,et al. Should tree biomass allometry be restricted to power models? [J].Forest Ecology and Management, 2015,353: 156 − 163. |
| [13] | DJOMO A N, CHIMI C D. Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: case study with application to remote sensing [J].Forest Ecology and Management, 2017,391: 184 − 193. |
| [14] | GOODMAN R C, PHILLIPS O L, BAKER T R. The importance of crown dimensions to improve tropical tree biomass estimates [J].Ecological Applications, 2014,24(4): 680 − 698. |
| [15] | SATOO T, MADGWICK H A I.Forest Biomass[M]. Boston: Martinus Nijhoff /Dr. W. Junk Publishers, 1982: 152. |
| [16] | HELMISAARI H, MAKKONEN K, KELLOMÄKI S,et al. Below- and above-ground biomass, production and nitrogen use in scots pine stands in eastern Finland [J].Forest Ecology and Management, 2002,165(1/3): 317 − 326. |
| [17] | 国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019.National Forestry and Grassland Administration.China Forest Resources Report(2014−2018) [M]. Beijing: China Forestry Publishing House, 2019. |
| [18] | 杨忠, 张建平, 王道杰, 等. 元谋干热河谷桉树人工林生物量初步研究[J]. 山地学报, 2001,19(6): 503 − 510.YANG Zhong, ZHANG Jianping, WANG Daojie,et al. Preliminary study on the biomass of artificialEucalyptus camaldulensisDehnl forests in Arid-Hot Valleys, Yuanmou [J].Journal of Mountain Science, 2001,19(6): 503 − 510. |
| [19] | 张利丽, 王志超, 陈少雄, 等. 不同林龄尾巨桉人工林的生物量分配格局[J]. 西北农林科技大学学报(自然科学版), 2017,45(6): 61 − 68.ZHANG Lili, WANG Zhichao, CHEN Shaoxiong,et al. Biomass allocation pattern ofEucalyptus urophylla×Eucalyptus grandisplantation at different ages [J].Journal of Northwest A&F University(Natural Science Edition), 2017,45(6): 61 − 68. |
| [20] | 揭凡, 杜阿朋, 竹万宽. 桉树生物量估算模型及与IPCC法的对比分析[J]. 桉树科技, 2019,36(1): 1 − 8.JIE Fan, DU Apeng, ZHU Wankuan. Allometry equations for estimatingEucalyptustree biomass and comparison with IPCC method [J].Eucalypt Science&Technology, 2019,36(1): 1 − 8. |
| [21] | XU Yuxing, DU Apeng, WANG Zhichao,et al. Effects of different rotation periods of eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity [J/OL].Forest Ecology and Management, 2020,456: 117683[2024-01-14]. doi: 10.1016/j.foreco.2019.117683. |
| [22] | WANG Zhichao, LIU Siru, XU Yuxing,et al. Differences in transpiration characteristics amongEucalyptusplantations of three species on the Leizhou Peninsula, Southern China [J/OL].Forests, 2022,13(10): 1544[2024-01-14]. doi: 10.3390/f13101544. |
| [23] | XIANG Wenhua, LI Linhua, OUYANG Shuai,et al. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations [J].European Journal of Forest Research, 2021,140(2): 317 − 332. |
| [24] | AKAIKE H. A new look at the statistical model identification [J].IEEE Transactions on Automatic Control, 1974,19(6): 716 − 723. |
| [25] | MENSAH S, KAKAÏ R G, SEIFERT T. Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits [J].Annals of Frest Research, 2016,59(1): 49 − 60. |
| [26] | 刘宣, 肖洒, 朱鹏, 等. 亚热带同质园不同人工林的生物量和林下植被多样性差异[J]. 浙江农林大学学报, 2022,39(4): 717 − 726.LIU Xuan, XIAO Sa, ZHU Peng,et al. Difference of biomass and understory vegetation diversity among different subtropical plantations in common gardens [J].Journal of Zhejiang A&F University, 2022,39(4): 717 − 726. |
| [27] | HOUGHTON R A, LAWRENCE K T, HACKLER J L,et al. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates [J].Golbal Change Biology, 2001,7(7): 731 − 746. |
| [28] | SAATCHI S S, HOUGHTON R A, ALVALÁ R C D S,et al. Distribution of aboveground live biomass in the Amazon Basin [J].Global Change Biology, 2007,13(4): 816 − 837. |
| [29] | SAINT-ANDRÉ L, M BOU A T, MABIALA A,et al. Age-related equations for above- and below-ground biomass of a eucalyptus hybrid in Congo [J].Forest Ecology and Management, 2005,205(1): 199 − 214. |
| [30] | PEICHL M, ARAIN M A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests [J].Forest Ecology and Management, 2007,253(1/3): 68 − 80. |
| [31] | SEO Y O, LEE Y J, LUMBRES R I C,et al. Influence of stand age class on biomass expansion factor and allometric equations forPinus rigidaplantations in South Korea [J].Scandinavian Journal of Forest Research, 2013,28(6): 566 − 573. |
| [32] | LIM H W, LEE K H, LEE K H,et al. Biomass expansion factors and allometric equations in an age sequence for Japanese cedar (Cryptomeria japonica) in Southern Korea [J].Journal of Forest Research, 2013,18(4): 316 − 322. |
| [33] | LI Hui, LI Chunyi, ZHA Tianshan,et al. Patterns of biomass allocation in an age-sequence of secondaryPinus bungeanaforests in China [J].The Forestry Chronicle, 2014,90(2): 169 − 176. |
| [34] | FATEMI F R, YANAI R D, HAMBURG S P,et al. Allometric equations for young northern hardwoods: the importance of age-specific equations for estimating aboveground biomass [J].Canadian Journal of Forest Research, 2011,41(4): 881 − 891. |
| [35] | TOBIN B, NIEUWENHUIS M. Biomass expansion factors for Sitka spruce (Picea sitchensis(Bong. ) Carr. ) in Ireland [J].European Journal of Forest Research, 2007,126(2): 189 − 196. |
| [36] | ZIANIS D, MENCUCCINI M. On simplifying allometric analyses of forest biomass [J].Forest Ecology and Management, 2004,187(2/3): 311 − 332. |
| [37] | PILLI R, ANFODILLO T, CARRER M. Towards a functional and simplified allometry for estimating forest biomass [J].Forest Ecology and Management, 2006,237(1/3): 583 − 593. |
| [38] | VERÓNICA G, LUIS P P, GERARDO R. Allometric relations for biomass partitioning ofNothofagus antarcticatrees of different crown classes over a site quality gradient [J].Forest Ecology and Management, 2010,259(6): 1118 − 1126. |
| [39] | MOROTE F A G, SERRANO F R L, ANDRÉS M,et al. Allometries, biomass stocks and biomass allocation in the thermophilic Spanish juniper woodlands of Southern Spain [J].Forest Ecology and Management, 2012,270: 85 − 93. |
| [40] | SINGNAR P, DAS M C, SILESHI G W,et al. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboosSchizostachyum dullooa, Pseudostachyum polymorphumandMelocanna baccifera[J].Forest Ecology and Management, 2017,395: 81 − 91. |
| [41] | WAGNER R G, TER-MIKAELIAN M T. Comparison of biomass component equations for four species of northern coniferous tree seedlings [J].Annals of Forest Science, 1999,56(3): 193 − 199. |
| [42] | XIAO Chunwang, CEULEMANS R. Allometric relationships for below- and aboveground biomass of young scots pines [J].Forest Ecology and Management, 2004,203(1/3): 177 − 186. |
| [43] | CIENCIALA E, ČERNÝ M, TATARINOV F,et al. Biomass functions applicable to scots pine [J].Trees, 2006,20(4): 483 − 495. |
| [44] | JENKINS J C, CHOJNACKY D C, HEALTH L S,et al. National scale biomass estimators for United States tree species [J].Forest Science, 2003,49(1): 12 − 35. |
| [45] | BOND-LAMBERTY B, WANG C, GOWER S T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba [J].Canadian Journal of Forest Research, 2002,32(8): 1441 − 1450. |