| [1] | GAMUYAO R, NAGAI K, AYANO M,et al. Hormone distribution and transcriptome profiles in bamboo shoots provide insights on bamboo stem emergence and growth [J].Plant and Cell Physiology, 2017,58(4): 702 − 716. |
| [2] | WEI Qiang, JIAO Chen, DING Yulong,et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo [J].Tree Physiology, 2018,38(4): 641 − 654. |
| [3] | 李玉敏, 冯鹏飞. 基于第9次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019,17(6): 45 − 48.LI Yumi, FENG Pengfei. Bamboo resources in China based on the Ninth National Forest Inventory Data [J].World Bamboo and Rattan, 2019,17(6): 45 − 48. |
| [4] | PENG Zhenghua, LU Ying, LI Lubin,et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J].Nature Genetics, 2013,45(4): 456 − 461. |
| [5] | WANG Kaili, ZHANG Yuanyuan, ZHANG Hengmu,et al. MicroRNAs play important roles in regulating the rapid growth of thePhyllostachys edulisculm internode [J].New Phytologist, 2021,231(6): 2215 − 2230. |
| [6] | PENG Zhenghua, ZHANG Chunling, ZHANG Ying,et al. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis) [J/OL].PLoS One, 2013,8(11): e78944[2022-11-05]. doi: 10.1371/journal.pone.0078944. |
| [7] | CHEN Ming, GUO Lin, RAMAKRISHNAN M,et al. Rapid growth of moso bamboo (Phyllostachys edulis): cellular roadmaps, transcriptome dynamics, and environmental factors [J].The Plant Cell, 2022,34(10): 3577 − 3610. |
| [8] | 毛美红, 丁笑章, 傅柳方, 等. 干旱对毛竹林新竹成竹影响的调查分析[J]. 世界竹藤通讯, 2012,10(1): 12 − 15.MAO Meihong, DING Xiaozhang, FU Liufang,et al. Investigation of the effect of drought on new moso forest cultivation [J].World Bamboo and Rattan, 2012,10(1): 12 − 15. |
| [9] | TIAN Chaoguang, WAN Ping, SUN Shouhong,et al. Genome-wide analysis of the GRAS gene family in rice andArabidopsis[J].Plant Molecular Biology, 2004,54(4): 519 − 532. |
| [10] | ZHAO Hansheng, DONG Lili, SUN Huayu,et al. Comprehensive analysis of multi-tissue transcriptome data and the genome-wide investigation of GRAS family inPhyllostachys edulis[J/OL].Scientific Reports, 2016,6(1): 27640[2022-11-05]. doi: 10.1038/srep27640. |
| [11] | FAN Yu, YAN Jun, LAI Deli,et al. Genome-wide identification, expression analysis, and functional study of the GRAS transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor(L.) Moench] [J/OL].BMC Genomics, 2021,22(1): 509[2022-11-05]. doi: 10.1186/s12864-021-07848-z. |
| [12] | GUO Yuyu, WU Hongyu, LI Xiang,et al. Identification and expression of GRAS family genes in maize (Zea maysL.)[J/OL].PLoS One, 2017,12(9): e0185418[2022-11-05]. doi: 10.1371/journal.pone.0185418. |
| [13] | JAISWAL V, KAKKAR M, KUMARI P,et al. Multifaceted roles of GRAS transcription factors in growth and stress responses in plants [J/OL].iScience, 2022,25(9): 105026[2022-11-05]. doi: 10.1016/j.isci.2022.105026. |
| [14] | BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction [J].Genes and Development, 2000,14(10): 1269 − 1278. |
| [15] | IKEDA A, UEGUCHI-TANAKA M, SONODA Y,et al. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of theSLR1 gene, an ortholog of the height-regulating geneGAI/RGA/RHT/D8 [J].The Plant Cell, 2001,13(5): 999 − 1010. |
| [16] | KAMIYA N, ITOH J, MORIKAMI A,et al. TheSCARECROWgene’s role in asymmetric cell divisions in rice plants [J].The Plant Journal, 2003,36(1): 45 − 54. |
| [17] | MA Hongshuang, LIANG Dan, SHUAI Peng,et al. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance inArabidopsis thaliana[J].Journal of Experimental Botany, 2010,61(14): 4011 − 4019. |
| [18] | LAURENZIO L D, WYSOCKA-DILLER J, MALAMY J E,et al. TheSCARECROWgene regulates an asymmetric cell division that is essential for generating the radial organization of theArabidopsisroot [J].Cell, 1996,86(3): 423 − 433. |
| [19] | DAY R B, SHIBUYA N, MINAMI E. Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor [J].Biochimica et Biophysica Acta, 2003,1625(3): 261 − 268. |
| [20] | DAY R B, TANABE S, KOSHIOKA M,et al. Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells [J].Plant Molecular Biology, 2004,54(2): 261 − 272. |
| [21] | 吕煜梦, 张舒婷, 王雪晶, 等. 多花黄精几丁质诱导赤霉素应答基因(CIGR)克隆及其功能[J]. 应用与环境生物学报, 2020,26(2): 255 − 263.LÜ Yumeng, ZHANG Shuting, WANG Xuejing,et al. Cloning and preliminary functional study of the chitin-inducible gibberellin-responsive (CIGR) gene inPolygonatum cyrtonemaHua [J].Chinese Journal of Applied&Environmental Biology, 2020,26(2): 255 − 263. |
| [22] | 姜福星, 黄远祥, 周鹏, 等. 白花虎眼万年青QtCIGR1基因的克隆及功能分析[J]. 分子植物育种, 2018,16(17): 5584 − 5590.JIANG Fuxing, HUANG Yuanxiang, ZHOU Peng,et al. Cloning and functional analysis ofQtCIGR1 gene fromOrnithogalum thyrsoides[J].Molecular Plant Breeding, 2018,16(17): 5584 − 5590. |
| [23] | KOVI M R, ZHANG Yushan, YU Sibin,et al. Candidacy of a chitin-inducible gibberellin-responsive gene fora major locus affecting plant height in rice that is closely linked to Green Revolution genesd1 [J].Theoretical and Applied Genetic, 2011,123(5): 705 − 714. |
| [24] | SUN Xiaolin, XUE Bin, JONES W T,et al. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development [J].Plant Molecular Biology, 2011,77(3): 205 − 223. |
| [25] | ZHAO Hansheng, GAO Zhimin, WANG Le,et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis) [J/OL].Gigascience, 2018,7(10): giy115[2022-11-05]. doi: 10.1093/gigascience/giy115. |
| [26] | PYSH L D, WYSOCKA-DILLER J W, CAMILLERI C,et al. The GRAS gene family inArabidopsis: sequence characterization and basic expression analysis of theSCARECROW-LIKEgenes [J].The Plant Journal, 1999,18(1): 111 − 119. |
| [27] | CHEN C Y, HSIEH M H, YANG C C,et al. Analysis of the cellulose synthase genes associated with primary cell wall synthesis inBambusa oldhamii[J].Phytochemistry, 2010,71(11/12): 1270 − 1279. |
| [28] | 白青松. 毛竹SAUR、DELLA基因的鉴定、克隆及功能分析[D]. 北京: 中国林业科学研究院, 2017.BAI Qingsong.Identification, Clone and Function Analysis of SAUR and DELLA Genes in Moso Bamboo[D]. Beijing: Chinese Academy of Forestry, 2017. |
| [29] | 魏涵天. 毛竹高生长相关PeGA20ox1基因的克隆及功能分析[D]. 杭州: 浙江农林大学, 2021.WEI Hantian.Cloning and Functional Analysis of PeGA20ox1Gene Related to Height Growth in Phyllostachys edulis[D]. Hangzhou: Zhejiang A&F University, 2021. |
| [30] | 林源. 小佛肚竹BvCIGR基因的生物学功能分析及在水稻种质创新的应用[D]. 杭州: 浙江农林大学, 2014.LIN Yuan.Biological Function Analysis and Application in Rice Germplasm Innovation of BvCIGR Gene[D]. Hangzhou: Zhejiang A&F University, 2014. |
| [31] | 崔凯. 毛竹茎秆快速生长的机理研究[D]. 北京: 中国林业科学研究院, 2011.CUI Kai.The Mechanism Research of Fast-growing Culms of Phyllostachys edulis[D].Beijing: Chinese Academy of Forestry, 2011. |
| [32] | 胡智勇. 毛竹的生物学特性及栽植技术[J]. 安徽农学通报, 2014,20(12): 117 − 118.HU Zhiyong. Biological characteristics and planting techniques of moso bamboo (Phyllostachys edulis) [J].Anhui Agricultural Science Bulletin, 2014,20(12): 117 − 118. |
| [33] | HOU Dan, ZHAO Zhongyu, HU Qiutao,et al. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice [J].Tree Physiology, 2020,40(12): 1792 − 1806. |
| [34] | GUO Pengcheng, WEN Jing, YANG Jin,et al. Genome-wide survey and expression analyses of the GRAS gene family inBrassica napusreveals their roles in root development and stress response [J].Planta, 2019,250(4): 1051 − 1072. |
| [35] | WANG Shengsheng, DUAN Zhen, YAN Qi,et al. Genome-wide identification of the GRAS family genes inMelilotus albusand expression analysis under various tissues and abiotic stresses [J/OL].International Journal of Molecular Sciences, 2022,23(13): 7403[2022-11-05]. doi: 10.3390/ijms23137403. |
| [36] | HE Zihang, TIAN Zengzi, ZHANG Qun,et al. Genome-wide identification, expression and salt stress tolerance analysis of the GRAS transcription factor family inBetula platyphylla[J/OL].Frontiers in Plant Science, 2022,13: 1022076[2022-11-05]. doi: 10.3389/fpls.2022.1022076. |
| [37] | XU Kai, CHEN Shoujun, LI Tianfei,et al.OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes [J/OL].BMC Plant Biology, 2015,15: 141[2022-11-05]. doi: 10.1186/s12870-015-0532-3. |
| [38] | YUAN Yangyang, FANG Linchun, KARUNGO S K,et al. Overexpression ofVaPAT1, a GRAS transcription factor fromVitis amurensis, confers abiotic stress tolerance inArabidopsis[J].Plant Cell Report, 2016,35(3): 655 − 666. |