[1] LIU Yuli, ZHOU Guomo, DU Huaqiang, et al.Soil respiration of a moso bamboo forest significantly affected by gross ecosystem productivity and leaf area index in an extreme drought event [J/OL].PeerJ, 2018,6: e5747[2024-02-20]. doi: 10.7717/peerj.5747.
[2] RAMAKRISHNAN M, YRJÄLÄ K, VINOD K K,et al.Genetics and genomics of moso bamboo (Phyllostachys edulis): current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry [J/OL].Food and Energy Security, 2020,9(4): e229[2024-02-20]. doi: 10.1002/fes3.229.
[3] ZHAO Hansheng, GAO Zhimin, WANG Le, et al.Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis) [J/OL].GigaScience, 2018,7(10): giy115[2024-02-20]. doi: 10.1093/gigascience/giy115.
[4] BOURQUE G, BURNS K H, GEHRING M, et al.Ten things you should know about transposable elements [J/OL].Genome Biology, 2018,19:199[2024-02-20]. doi: 10.1186/s13059-018-1577-z.
[5] RAMAKRISHNAN M, PAPOLU P K, MULLASSERI S,et al. The role of LTR retro transposons in plant genetic engineering: how to control their transposition in the genome [J].Plant Cell Reports, 2023,42(1): 3 − 15.
[6] LIU Beibei, Zhao Meixia.How transposable elements are recognized and epigenetically silenced in plants? [J/OL].Current Opinion in Plant Biology, 2023,75: 102428[2024-02-20]. doi: 10.1016/j.pbi.2023.102428.
[7] RAMAKRISHNAN M, SATISH L, KALENDAR R,et al.The dynamism of transposon methylation for plant development and stress adaptation [J/OL].International Journal of Molecular Sciences, 2021,22(21): 11387[2024-02-20]. doi: 10.3390/ijms222111387.
[8] NAITO K, FENG Zhang, TSUKIYAMA T,et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression [J].Nature, 2009,461(7267): 1130 − 1134.
[9] ZHOU Mingbing, ZHU Yihang, BAI Youhuang, et al.Transcriptionally active LTR retroelement-related sequences and their relationship with small RNA in moso bamboo (Phyllostachys edulis) [J/OL].Molecular Breeding, 2017,37(10): 132[2024-02-20]. doi: 10.1007/s11032-017-0733-6.
[10] SUONIEMI A, NARVANTO A, SCHULMAN A H. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays [J].Plant Molecular Biology, 1996,31(2): 295 − 306.
[11] CABILI M N, TRAPNELL C, GOFF L,et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J].Genes&Development, 2011,25(18): 1915 − 1942.
[12] WASHIETL S, KELLIS M, GARBER M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals [J].Genome Research, 2014,24(4): 616 − 628.
[13] KONDO T, PLAZA S, ZANET J,et al. Small peptides switch the transcriptional activity of shavenbaby during drosophila embryogenesis [J].Science, 2010,329(5989): 336 − 339.
[14] SALIH H, GONG Wengfang, HE Shoupu,et al. Comparative transcriptome analysis of TUCPs inGossypium hirsutumligon-lintless-1 mutant and their proposed functions in cotton fiber development [J].Molecular Genetics and Genomics, 2019,294(1): 23 − 34.
[15] XIAO Ke, YANG Yuemei, BIAN Yanyan,et al. Identification of differentially expressed long noncoding RNAs in human knee osteoarthritis [J].Journal of Cellular Biochemistry, 2019,120(3): 4620 − 4633.
[16] LUO Honglin, YANG Huizan, LIN Yong,et al. LncRNA and mRNA profiling during activation of tilapia macrophages by HSP70 and antigen [J].Oncotarget, 2017,8(58): 98455 − 98470.
[17] LIU Yong, QI Bing, XIE Juan, et al.Filtered reproductive long non-coding RNAs by genome-wide analyses of goat ovary at different estrus periods [J].BMC Genomics, 2018,19(1): 866[2024-02-20]. doi:10.1186/s12864-018-5268-7.
[18] LIU Huimin, LU Yan, WANG Juan,et al. Genome-wide screening of long non-coding RNAs involved in rubber biosynthesis [J].Journal of Integrative Plant Biology, 2018,60(11): 1070 − 1082.
[19] WANG Dong, QU Zhipeng, YANG Lan,et al. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants [J].Plant Journal, 2017,90(1): 133 − 146.
[20] HAO Qin, YANG Lei, FAN Dingyu,et al.The transcriptomic response to heat stress of a jujube (Ziziphus jujubaMill. ) cultivar is featured with changed expression of long noncoding RNAs [J/OL].PLoS One, 2021,16(5): e0249663[2024-02-20]. doi: 10.1371/journal.pone.0249663.
[21] DING Yiqian, ZOU Longhai, WU Jiajun, et al.The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in moso bamboo under abiotic stress [J/OL].Plant Science, 2022,325: 111451[2024-02-20]. doi: 10.1016/j.plantsci.2022.111451.
[22] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J].Bioinformatics, 2014,30(15): 2114 − 2134.
[23] KIM D, PAGGI J M, PARK C,et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J].Nature Biotechnology, 2019,37(8): 907 − 915.
[24] LIAO Yang, SMYTH G K, SHI Wei. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features [J].Bioinformatics, 2014,30(7): 923 − 930.
[25] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J/OL].Genome Biology, 2014,15: 550[2024-02-20]. doi: 10.1186/s13059-014-0550-8.
[26] TRAPNELL C, ROBERTS A, GOFF L,et al. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks [J].Nature Protocols, 2012,7(3): 562 − 578.
[27] SUN Liang, LUO Haitao, BU Dechao,et al.Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts [J/OL].Nucleic Acids Research, 2013,41(17): e166[2024-02-20]. doi: 10.1093/nar/gkt646.
[28] MISTRY J, BATEMAN A, FINN R D. Predicting active site residue annotations in the Pfam database [J/OL].BMC Bioinformatics, 2007,8: 298[2024-02-20]. doi:10.1186/1471-2105-8-298.
[29] KANG Yujian, YANG Dechang, KONG Lei,et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features [J].Nucleic Acids Research, 2017,45(W1): W12 − W16.
[30] ZHOU Mingbing, TAO Guiyun, PI Peiyao,et al. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla) [J].Planta, 2016,244(4): 775 − 787.
[31] CHEN Nansheng. Using RepeatMasker to identify repetitive elements in genomic sequences [J].Current Protocols in Bioinformatics, 2004,5(1): 4 − 10.
[32] QUINLAN A R, HALL I M. BEDTools: a flexible suite of utilities for comparing genomic features [J].Bioinformatics, 2010,26(6): 841 − 842.
[33] PERTEA M, PERTEA G M, ANTONESCU C M,et al. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads [J].Nature Biotechnology, 2015,33(3): 290 − 295.
[34] PERTEA G, PERTEA M. GFF Utilities: GffRead and GffCompare [J/OL].F1000Research, 2020,9:304[2024-02-20]. doi: 10.12688/f1000research.23297.2.
[35] SONESON C, LOVE M I, ROBINSON M D. Differential analyses for RNA-Seq: transcript-level estimates improve gene-level inferences [J/OL].F1000Research, 2015,4:1521[2024-02-20]. doi: 10.12688/f1000research.7563.2.
[36] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod [J].Methods, 2001,25(4): 402 − 408.
[37] 陈娅欣, 周明兵. 毛竹长末端重复序列反转录转座子的全基因组特征及进化分析[J]. 浙江农林大学学报, 2021,38(3): 455 − 463.

CHEN Yaxin, ZHOU Mingbing. Genome-wide characteristics and evolution analysis of long terminal repeat retrotransposons inPhyllostachys edulis[J].Journal of Zhejiang A&F University, 2021,38(3): 455 − 463.
[38] XIN Youchao, MA Bi, XIANG Zhonghua,et al.Amplification of miniature inverted-repeat transposable elements and the associated impact on gene regulation and alternative splicing in mulberry (Morus notabilis) [J/OL].Mobile DNA, 2019,10: 27[2024-02-20]. doi: 10.1186/s13100-019-0169-0.
[39] XU Ling, ZHANG Yu, SU Yuan,et al. Structure and evolution of full-length LTR retrotransposons in rice genome [J].Plant Systematics and Evolution, 2010,287(1/2): 19 − 28.
[40] PATERSON A H, BOWERS J E, BRUGGMANN R,et al. TheSorghum bicolorgenome and the diversification of grasses [J].Nature, 2009,457(7229): 551 − 556.
[41] WANG Hao, XU Zhao, YU Hongjie. LTR retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in Asian cultivated rice [J/OL].BMC Genomics, 2008,9(1): 565[2024-02-20]. doi: 10.1186/1471-2164-9-565.
[42] SALLAM N, MOUSSA M. DNA methylation changes stimulated by drought stress in ABA-deficient maize mutant [J].Plant Physiology and Biochemistry, 2021,160: 218 − 224.
[43] BENOIT M, DROST H G, CATONI M,et al.Environmental and epigenetic regulation of retrotransposons in tomato [J/OL].PLoS Genetics, 2019,15(9): e1008370[2024-02-20]. doi: 10.1371/journal.pgen.1008370.
[44] CASACUBERTA E, GONZÁLEZ J. The impact of transposable elements in environmental adaptation [J].Molecular Ecology, 2013,22(6): 1503 − 1517.
Baidu
map